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Background

• Research into the role of gaming as an entry point 
into cybercrime is growing

• Example: DDoS attacks-as-a-service can be used by 
gamers with little technical knowledge to gain an 
advantage over opponents 

• Exposure to, and use of, these services is believed 
to be a pathway into more serious cybercrime
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Figure from: National Crime Agency. (2015). Identify, Intervene, Inspire: Helping young people to pursue 
careers in cyber security, not cyber crime, 6.



Related Work

• Previous work by Pastrana et al.1:
• Analysed Hack Forums, for predicting future key actors
• Produced open-source research tools for analysis

• Hack Forums is a general-purpose underground hacking 
forum

• MPGH is specifically for multiplayer games

• Both forums are available on the open web
• Also available in the CrimeBB dataset, available for research use 

from the Cambridge Cybercrime Centre
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1 Pastrana S., Hutchings A., Caines A., Buttery P. (2018) Characterizing Eve: Analysing Cybercrime Actors in a 
Large Underground Forum. In: Bailey M., Holz T., Stamatogiannakis M., Ioannidis S. (eds) Research in Attacks, 
Intrusions, and Defenses. RAID 2018. Lecture Notes in Computer Science, vol 11050. Springer, Cham



Ethics

• This work has received approval from the 
Department of Computer Science & Technology’s 
ethics committee

• Only carrying out analysis of collective behaviour, 
rather than identifying individuals
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Studying MPGH

• Aim is not to carry out “predictive policing”, but 
towards identifying possible intervention points

• This work combines prediction techniques to 
identify characteristics of key actors
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Key Actors

Individuals who have released tools and tutorials on 
the forum, or have advertised cybercrime related 
services such as DDoS-for-hire. 
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MPGH Dataset
• Snapshot of forum activity
• 764k threads, 9.36m posts, 132k members with >5 posts
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2 Caines, A., Pastrana, S., Hutchings, A., & Buttery, P. J. (2018). 
Automatically identifying the function and intent of posts in 
underground forums. Crime Science, 7(1), 19. 
https://doi.org/10.1186/s40163-018-0094-4 10



Key Actor Selection
• Manually selected 87 key actors, including:

• Those who have released tools and tutorials on cracking, 
gaming and hacking forums

• Those who have advertised DDoS-for-hire (booter/stresser) 
services

• Those who are strongly connected to other key actors, and 
are involved in similar activities to key actors

• No information relating to any arrests or offending are 
available for this forum
• Therefore a manual selection process was used
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Feature Collection

• Initial features include:
• Social network analysis (eigenvector centrality, …)
• Activity counts (thread count on marketplace, …)
• Activity metrics (days spent on forum, …)
• Interaction metrics (number of citations, …)
• Impact metrics (h-index, i-10 index, …)

• Additional features from NLP tools include (averaged 
over user’s posts):
• Sentiment (quantitative measure of emotion)
• Post types (information request, social, tutorial, …)
• Post intents (positive, negative, aggressive, …)
• Addressee types
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Feature Selection

• Only members with more than 5 posts (‘active 
members’) are considered for analysis (~17% of all)
• Features are iteratively removed until correlations 

are less than 80%
• Some techniques and analysis rely on low 

multicollinearity of features

• Features are scaled
• Some techniques rely on normalised distances of 

features

• Dataset is split into train-test-validation sets
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Key Actor Insights
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Changing Interests Over Time
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Start Middle End

Lifetime of Key Actor on the Forum 



Logistic Regression
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Potential Key Actor 
Predictions
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K-means Clustering (All Members)
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• Placing members into (k=)5 groups
• Proportion of key actors per group:

12 key 
actors of 
47,437 

members
0.03%

Members used for 
prediction

3 key 
actors of 

3966 
members

0.08%

9 key 
actors of 

10545 
members

0.09%

14 key 
actors of 
21,406 

members
0.07%

46 key 
actors of 

588 
members

7.82%



Social Network Analysis
Red: General key actor
Blue: Distributing tools and tutorials
Yellow: Key actors found after 
interaction with other key actors
Green: Other forum members
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Social Network Analysis
Red: General key actor
Blue: Distributing tools and tutorials
Yellow: Key actors found after 
interaction with other key actors
Green: Other forum members

Pink: Predicted key actors



Group-based trajectory modelling
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This sustainer trajectory contains 28% of all key actors, and is used for prediction



post_hack <= 1.5
gini = 0.5

samples = 33533
value = [16803, 16730]

indegree_centrality <= 0.002
gini = 0.188

samples = 16928
value = [15150, 1778]

True

h <= 2.5
gini = 0.179

samples = 16605
value = [1653, 14952]

False

thread_hack <= 0.5
gini = 0.074

samples = 15732
value = [15129, 603]

gini = 0.035
samples = 1196

value = [21, 1175]

post_games_hackforums_sandbox <= 33.5
gini = 0.027

samples = 15008
value = [14800, 208]

gini = 0.496
samples = 724

value = [329, 395]

gini = 0.0
samples = 14606

value = [14606, 0]

gini = 0.499
samples = 402

value = [194, 208]

gini = 0.36
samples = 900

value = [688, 212]

post_coding <= 0.5
gini = 0.115

samples = 15705
value = [965, 14740]

thread_hack <= 0.5
gini = 0.333

samples = 2552
value = [539, 2013]

gini = 0.063
samples = 13153

value = [426, 12727]

gini = 0.498
samples = 413

value = [219, 194]

thread_market <= 1.5
gini = 0.254

samples = 2139
value = [320, 1819]

gini = 0.162
samples = 1540

value = [137, 1403]

gini = 0.424
samples = 599

value = [183, 416]

Random Forest
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Inspecting Random Forest and Neural Network 
Models

SHAP diagram explaining the prediction of one member
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Topic Analysis

Terms related directly to cybercrime, or to the creation of tools used for cybercrime
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• Computationally expensive to compute for all members, but is used to 
verify prediction results



Key Actor Predictions
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49 members are predicted as key actors



Summary: Key Actor Behaviour

• Different techniques begin to explain the behaviour 
of key actors, showing they:
• Have a higher h-index
• Have been active on the forum for longer
• Mostly well-connected with other key actors, and have 

high eigenvector centrality
• Sustain low-frequency post activity on the marketplace, 

and high-frequency post activity in the gaming category
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Summary: Techniques

• Techniques should be combined to produce better 
predictions and insights of potential key actors
• Individual features used for prediction, including 

reputation, are not good indicators of key actors 
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Wider Context

• Finding common characteristics of key actor activities 
are useful in understanding behaviours

• These can later be used to identify points of 
intervention, to deter and prevent individuals from 
progressing further into cybercrime

• This could include law enforcement activity having a 
presence on the forum
• Could include disrupting low-level sustaining activity on the 

marketplace
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